Skip to content

Prove That...

Here are theorems and proofs that are essential in mathematical analysis. It would be nice if you could prove them smoothly.

Set

  1. (De Morgan's laws)
    • \((A \cup B)^C = A^C \cap B^C\)
    • \((A \cap B)^C = A^C \cup B^C\)
  2. Any countable union of countable sets is a countable set.

Limit of a sequence

  1. Prove with definition: \(\lim\limits_{n\to\infty}{\sqrt[n]{n}} = 1\).
  2. If \(\lim\limits_{n\to\infty}{a_n} = a\), then \(\lim\limits_{n\to\infty}{\dfrac{a_1+a_2+\cdots+a_n}{n}} = a\).
  3. For convergent sequences \(\{x_n\}\) and \(\{y_n\}\), if \(\lim\limits_{n\to\infty}x_n=a\), \(\lim\limits_{n\to\infty}y_n=b\), and \(a<b\), then exists \(N\in\mathbb{N}^\star\) so that \(x_n<y_n\) for all \(n>N\).
  4. If \(\lim\limits_{n\to\infty}x_n=a\), \(\lim\limits_{n\to\infty}y_n=b\neq0\), then \(\lim\limits_{n\to\infty}\dfrac{x_n}{y_n}=\dfrac{a}{b}\).
  5. \(a_n = \left(1 + \dfrac{1}{n}\right)^n\) and \(b_n = \left(1 + \dfrac{1}{n}\right)^{n + 1}\) converges to \(e\).
  6. \(a_n = 1 + \dfrac{1}{1!} + \dfrac{1}{2!} + \cdots + \dfrac{1}{n!}\) converges to \(e\).
  7. \(a_n = 1 + \dfrac{1}{2} + \dfrac{1}{3} + \cdots + \dfrac{1}{n} - \ln n\) converges to \(\gamma\).
  8. \(\lim\limits_{n\to\infty}a_n=A\iff\lim\limits_{n\to\infty}a_{2n-1}=\lim\limits_{n\to\infty}a_{2n}=A\).
  9. \(\{a_n\}\) is convergent \(\iff\) every non-trivial subsequence \(\{a_{n_k}\}\) of \(\{a_n\}\) converges.
  10. \(a_n = \sin n\) is divergent.
  11. Prove with Nested interval theorem: \(\mathbb{R}\) is uncountable.
  12. Refer to Completeness of the Real Numbers, and prove
    1. Least upper bound \(\Rightarrow\) Monotone convergence.
    2. Monotone convergence \(\Rightarrow\) Nested interval.
    3. Nested interval \(\Rightarrow\) Bolzano-Weierstrass.
    4. Bolzano-Weierstrass \(\Rightarrow\) Cauchy criterion.
    5. Cauchy criterion \(\Rightarrow\) Least upper bound.
    6. Cauchy criterion \(\Rightarrow\) Nested interval.
    7. Nested interval \(\Rightarrow\) Least upper bound.

Limit of a function

  1. If \(\lim\limits_{x\to a}f(x)=A\), \(\lim\limits_{x\to a}g(x)=B\) and \(A>B\), then exists \(\delta>0\) so that \(f(x)>g(x)\) for all \(x\in\mathring{U}(x_0, \delta)\).
  2. If \(\lim\limits_{x\to x_0}f(x)=A\), then exists \(\delta>0\) so that \(f(x)\) is bounded in \(\mathring{U}(x_0, \delta)\).
  3. Prove with definition: \(\lim\limits_{x\to0}\dfrac{\sin x}{x} = 1\).
  4. (Heine's theorem) The necessary and sufficient condition for \(\lim\limits_{x\to a}f(x)=A\) is that for all sequences \(\{x_n\}\) which converges to \(a\) and \(x_n\neq a\), \(\lim\limits_{n\to\infty}f(x_n)=A\).
  5. Prove with Heine's theorem: \(f(x)=\sin\dfrac{1}{x}\) has no limit as \(x\to0\).
  6. (Cauchy criterion) Prove with Heine's theorem: \(\lim\limits_{x\to a}f(x)\) exists if and only if for all \(\varepsilon>0\), exists \(\delta>0\) so that \(|f(x)-f(y)|<\varepsilon\) for all \(x,y\in\mathring{U}(x_0, \delta)\).
  7. Prove with definition: \(\lim\limits_{x\to\infty}\left(1+\dfrac{1}{x}\right)^x=e\).

Continuity

  1. Every irrational point of \(R(x)\) is continuous, every rational point of \(R(x)\) is removable discontinuous, where
    \[R(x)=\left\{\begin{align}\frac{1}{q}&\quad \text{if}\ x=\frac{p}{q}\text{, with}\ p\in\mathbb{Z}\ \text{and}\ q\in\mathbb{N}\ \text{coprime.}\\0&\quad \text{if}\ x\ \text{is irrational.}\end{align}\right.\]
  2. If \(u=g(x)\) is continuous at \(x_0\), and \(y=f(u)\) is continuous at \(u_0=g(x_0)\), then \(f\circ g(x)=f(g(x))\) is continuous at \(x_0\).
  3. If \(f(x)\) is continuous in closed interval \([a, b]\),
    1. then it is bounded in \([a, b]\).
    2. then \(\max f(x)\) and \(\min f(x)\) exists in \([a, b]\).
    3. and \(f(a)\cdot f(b)<0\), then exists \(\xi\in(a, b)\) so that \(f(\xi)=0\).
    4. then it can reach all values between \(\min f(x)\) and \(\max f(x)\).
    5. (Cantor's theorem) then it is uniformly continuous in \([a, b]\).
  4. The sufficient and necessary condition for \(f(x)\) to be uniformly continuous in \(D\) is that for all sequences \(\{x_n\}, \{y_n\}\in D^\mathbb{N}\) that satisfies \(\lim\limits_{n\to\infty}(x_n-y_n)=0\), \(\lim\limits_{n\to\infty}(f(x_n)-f(y_n))=0\).
  5. If \(f(x)\) is continuous in finite open interval \((a, b)\), then \(f(x)\) is uniformly continuous on \((a, b)\) if and only if \(\lim\limits_{x\to a^+}f(x)\) and \(\lim\limits_{x\to b^-}f(x)\) exist.

Derivative

  1. (Darboux's theorem) If \(f(x)\) is differentiable in \((a, b)\), then for every \(y\) between \(f'(a)\) and \(f'(b)\), there exists \(\xi\in(a, b)\) so that \(f'(\xi)=y\).
  2. (Rolle's theorem) If \(f(x)\) is continuous in \([a, b]\), differentiable in \((a, b)\), and \(f(a)=f(b)\), then exists \(\xi\in(a, b)\) so that \(f'(\xi)=0\).
  3. If \(f(x)\) is twice differentiable in \([a, b]\), and \(f(a) = f(b) = 0\), then \(\forall x\in(a, b)\), \(\exists\xi\in(a, b)\), such that \(2f(x) = f''(\xi)(x - a)(x - b)\).
  4. If \(f'(x)\) is bounded in \((a, b)\), then \(f(x)\) is uniformly continuous in \((a, b)\).
  5. If \(f(x)\) is twice differentiable at \(x=0\), \(\lim\limits_{x\to0}\dfrac{f(x)}{x}=0\), and \(f''(0)=4\),
    1. find \(\lim\limits_{x\to0}\dfrac{f(x)}{x^2}\) and \(\lim\limits_{x\to0}\left(1+\dfrac{f(x)}{x}\right)^{1/x}\). (answer: \(2\) and \(e^2\))
    2. point out two mistakes: \(\lim\limits_{x\to0}\dfrac{f(x)}{x^2}=\lim\limits_{x\to0}\dfrac{f'(x)}{2x}=\lim\limits_{x\to0}\dfrac{f''(x)}{2}=\dfrac{1}{2}f''(0)=2\).
  6. Prove using Taylor series with Lagrange remainder: \(e\) is irrational.

Last update: 2023-11-24
Created: 2023-10-27